PUBLISHED BY INSTITUTE OF PHYSICS PUBLISHING FOR SISSA

RECEIVED: November 28, 2006
REVISED: February 12, 2007
ACCEPTED: February 26, 2007
PUBLISHED: March 8, 2007

Recursion representation of the Neveu-Schwarz
superconformal block

Leszek Hadasz*

Physikalisches Institut, Rheinische Friedrich- Wilhelms-Universitat
Nujallee 12, 53115 Bonn, Germany, and

M. Smoluchowski Institute of Physics, Jagiellonian University
Reymonta 4, 30-059 Krakow, Poland

E-mail: hadasz@th.if.uj.edu.pl

Zbigniew Jaskdlski

Institute of Theoretical Physics, University of Wroctaw
pl. M. Borna, 950-204 Wrocltaw, Poland
E-mail: jask@ift.uni.wroc.pl|

Paulina Suchanek

M. Smoluchowski Institute of Physics, Jagiellonian University
Reymonta 4, 30-059 Krakow, Poland
E-mail: suchanek@th.if.uj.edu.pll

ABSTRACT: Four-point super-conformal blocks for the N = 1 Neveu-Schwarz algebra are
defined in terms of power series of the even super-projective invariant. Coefficients of these
expansions are represented both as sums over poles in the “intermediate” conformal weight
and as sums over poles in the central charge of the algebra. The residua of these poles are

calculated in both cases. Closed recurrence relations for the block coefficients are derived.

KEYWORDS: [Field Theories in Lower Dimensions, Conformal and W Symmetryl.

*Alexander von Humboldt Fellow

© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep032007032 /jhep032007032 . pdf


mailto:hadasz@th.if.uj.edu.pl
mailto:jask@ift.uni.wroc.pl
mailto:suchanek@th.if.uj.edu.pl
http://jhep.sissa.it/stdsearch

Contents

Introduction

=

1=

]
1]

Four-point correlation functions of the Neveu-Schwarz sector

=

NS supermodule

NS chiral vertex operator

@ [

NS superconformal blocks

Recurrence relations

=
=

(>

4-point functions and 4-point superconformal blocks

o8]

& &

c — oo asymptotic of the inverse to the Gram matrix

;

Explicit calculations at f = %,2, and %

o
%!

1. Introduction

Since the appearance of the seminal BPZ work [[], the conformal block has been recognized
as one of the basic objects in conformal field theory. In spite of the progress achieved over
the years its explicit calculation is still one of the most difficult problems in CFT. Not
only the form of a general conformal block is unknown, but also its analytic properties still
have a status of conjectures rather than theorems. On the other hand, from the practical
point of view there exist very efficient recursive methods of an approximate (with arbitrary
precision), analytic determination of a general 4-point conformal block [J—[]. They were
used for instance in checking the conformal bootstrap in the Liouville theory with the DOZZ
coupling constants [[f], in study of the ¢ — 1 limit of minimal models or in obtaining
new results in the classical geometry of hyperbolic surfaces [[. In a more general context
of an arbitrary CFT model these methods allow for efficient numerical calculations of any
4-point function once the structure constants are known.

Similar problems can be also addressed in the supersymmetric conformal field theories
(SCFT) [B—-[L]]. It seems therefore desirable to develop analogous recursive methods also
in this more complicated case. The present paper is aimed as a step in this direction.
After defining conformal blocks for the Neveu-Schwarz algebra of the N = 1 SCFT we
give their representations in the form of a sum over poles in the central charge and in
the “intermediate” conformal weight and derive a recurrence relation for residua of these



poles. In the case of the sum over the poles in the central charge one can easily calculate
the leading (¢ — oo) term. This yields efficient recursion relations for the coefficients of
the so called z-expansion of NS superconformal blocks.

There are two problems which are natural continuations of the present work. The first
one is to extend our constructions and results to the Ramond sector. The second is to
develop recursion relations for the coefficients of the so called g-expansion [B, fI]. The latter
problem requires an explicit calculations of the asymptotic behavior of the superconformal
block for large intermediate weight. We hope to present the solutions to these problems in
the near future.

2. Four-point correlation functions of the Neveu-Schwarz sector

The superconformal symmetry is generated by a pair of holomorphic currents 7'(z), S(z)
and their anti-holomorphic counterparts T(z), S(2), where T and T are components of the
energy-momentum tensor while S and .S have dimensions (3/2,0) and (0, 3/2), respectively.
The algebra of the modes of T'(z) and S(z) is determined by the OPE-s

T()T(0) = 5o + 5T() +20T(O) + ...
T(2)S(0) = 55S(0) + -05(0) + -, 2.1)
S(2)S(0) = 3272 + %T(O) T

The space of fields of superconformal field theory (hereafter SCFT) decomposes onto the
space of fields ¢ng local with respect to S(z), and the space of the Ramond fields ¢ with
the property that the correlation functions

<S(Z)¢R(Zl, Z1) .. >

(with the dots denoting any other operator insertions) change the sing upon analytic con-
tinuation in z around the point z = z;. It the present paper we shall discuss only the NS

fields.
The locality properties of the NS field allow to write its OPE with S(z) in the form

3
S(2)¢ns(0,0) = > 2728 41ns(0,0).
keZ+1
Together with the usual Virasoro generators L,, defined by the OPE
T(2)¢ns(0,0) = > 2" *L_n¢ns(0,0),
kEZ
Sy, form the Neveu-Schwarz algebra determined by (R.1]),

Ly, Lp] = (m —n)Lygn + o (m2 - 1) Omtn,

12
m — 2k
(L Sk] = =5 Smtks (2.2)
c 1
{Sk, S1} = 2Lk + 3 </€2 - Z) Ok+1-



In the space of all NS fields there exist “super-primary” fields pa Alz,z) with the
conformal weights A, A, which satisfy

[Ln,goAA(O,O)] = [Sk,gpA,A(O,O)] =0, n k>0,

(Lo, £a,2(0,0)] = App £(0,0), (2.3)

and similarly for the “right” generators L,, and Sj. Each super-primary field is the “lowest”
component of the superfield

¢A7A(z70;27§) - ()OA,A(ZV?)+61/}A7A(272)+61Z}A7A(272)_aé&A,A(z72)7 (24)
where
T/JA,A = [5—1/2790A,A] ) ¢A,A = [5—1/27(F7A,A] ) 5A,A = {5—1/27 [5'—1/2#%,&] } )

and 6,0 are Grassman (odd) numbers. The superfield (P-4) satisfies the equations:

[Lru q)A,A(Za 67 27 é)]

o |:Zaz +(n+1) <A + %089)] Dp a(2,02, 9),

[y ®a 5(2,052,0)] = 2577 [205 — 020, — 02k + 1)A] ®p 5(2,6;2,0),  (2.5)

and analogous equations in the right sector.

Operators Lo, S 1 L1, (as well as their right counterparts) form a closed subalgebra
of the NS algebra and exponentiate to the group of the “super-projective” transformations.
These transformations allow to express three-point function of the primary superfields in
the form

<@3(23793;53,53)@2(22,92;22,52)®1(21,91;51791)>
= ZBZH ZRZT 7R 2R (91(00,0,00,0)05(1,0;1,0)@5(0,0:0,0)),  (26)
where y1 = Ay — Ay — Ay, Z1g = 21 — 20 — 6102 = 212 — 6103 ete.,

1 1
© = ——— (01203 + 02231 + 03210 — —016003 ),
m(ll‘% 2431 3412 2123>

and _
®3(00,0500,0) = lim_ R?As+283%4(R.0; R, 0).

Thus, in contrast to the non-supersymmetric case, the three point function is determined

by the superconformal symmetry up to two independent constants,

Cim = (p3(00,00)2 (1, 1)1 (0,0)), (2.7)

5321 = <<p3(OO, OO)(ZQ(L 1)(,01 (0, O)> (2.8)

The super-projective invariance also allows to express a general four-point function through

the four-point function of the form

(Ag, Ay @3(1,05;1,03)Po(2, 025 2, 02) | A1, Ay .



3. NS supermodule
Let va be the highest weight state with respect to the NS superconformal algebra (R.9)
Lova = Ava,  Lpva =8Swwa =0, meN, ke N-— %, (3.1)

where N is the set of positive integers. We denote by V£ the free vector space generated
by all vectors of the form

A KM = S_kL_pyva = Sy, ... S_le,mj .. Lo v, (3.2)

where K = {ky,ko,..., ki} CN— % and M = {m1,mq,...,m;} C N are arbitrary ordered
sets of indices

ki < ... <ko <k, mjg...ﬁmgﬁml,

such that |[K|+ |M| =k +...+k+mi+...+m; = f.
The %Z—graded representation of the NS superconformal algebra determined on the
space
Va =P Vi, WA=Cuwa,
feinu{o}
by the relations (R.2) and (B.1) is called the NS supermodule of the highest weight A and
the central charge ¢ (to avoid making the notation overloaded we omit the subscript c at

V). Each V£ is an eigenspace of Lg with the eigenvalue A + f. The space VA has also a
natural Zs-grading:

Va =Vievy, VW= W, Vvi= Vi,
meNU{0} keN-1

where VZE are eigenspaces of the parity operator (—1)F = (—1)2(Lo=4),

A nonzero element y € V£ of degree f is called a singular vector if it satisfies the
highest weight conditions (B.1]) with Lox = (A + f)x. It generates its own NS supermodule
Va4 which is a submodule of V.

The analysis of singular vectors can be facilitated by introducing a symmetric bilinear
form (.,.)ca on Va uniquely determined by the relations (va,va) = 1 and (L;,)T =
L_,,, (Sk)T = S_p. It is block-diagonal with respect to the %Z—grading. We denote by BC{A

the matrix of (.,.)ca on Vg calculated in the basis (B.2):

! —
[BC,A] KMIN (VA KM, VA LN )e,A- (3.3)

It is nonsingular if and only if the supermodule VA does not contain singular vectors of
degrees %, 1,..., f. The determinant of this matrix is given by the Kac theorem [[]:

det B/, = Kp J] (A— A )sU=%) (3.4)
1<rs<L2f



where Ky depends only on the level f, the sum r + s must be even and

rs—1 r2—1 9 s2—-11
Ays(c) = — T T s B* + 5 B (3.5)
1 2
- \/1—é+\/9—é>, é="c.
b 2v/2 ( 3
The multiplicity of each zero is given by Pyg(f) = dim V£ and can be read off from the
relation
o0 o0 _1
14+¢" 2
ZPNS(f)qf = H T
f=0 n=1

As a function of ¢ the Kac determinant vanishes at

¢ = onl(d) = 5 - <ﬁrs<A>‘ miA))Q’

w

where 1 <rs<2n,1<r, r+sé€2N, and

1
_ 2 _ _ )2
s <4A+7°s 1+ /16A2 + 8(rs — DA + (r — s) )

AGY

We shall use the following parametrization of conformal weights which is especially useful
in formulation of the fusion rules:

8‘ . (3.7)

4. NS chiral vertex operator

Super-descendants @ 4 (€, €|z, %) of the super-primary field o A(2,2) = @A (v, 72, 2)
are defined by the relations:

_ d _
eas(Loné,f?) = § 50w =2 " Tw)ea 56, 7), meEN,

_ 4 1
oA Sk €]z, 2) = j{_w(w k-

k = _
9 S(w)pa a(€;€lz,2), keN-3,

and by analogous formulae for the right sector. Using conformal Ward identities one can

express an arbitrary correlator of three descendants in terms of matrix elements which can
be further factorized into the holomorphic and anti-holomorphic parts

<§37 53 ‘()OA27A2 (527 52’27 2)’ 517 gl > = Qvo:g%Q%l (517 527 53) QvoaAZQ%I (517 527 53)7 (41)
where & € Va,, & € VA, The trilinear map

Az As A
90032201 :VASXVAQ XVAl — C



is determined by conditions which can be easily derived by analyzing the holomorphic (or
anti-holomorphic) part of the superconformal Ward identities for the three point function
(see [[J] for an analogous construction in the Virasoro case). They read:

0RO (Londs, &2,61) = 057320 (€3, &2, L&) (4.2)
I(n)
+ Z (:::;11 ) Zn_onAOS%2A01 (535 Lm£2a 51)5
m=—1
05322 G (S ks, &2, 61) = (—1)2WNEIN(E)) plalet (e &5 S16) (4.3)
I(k—3%)
1 1.,
+ Z <7k73;:_21> Zk 2 QOAOS%QAOl(g?nSmJF%g?,gl),
m=—1
where {(m) =m for m+1 > 0, and [(m) = oo for m + 1 < 0, and
0532201 (€3, L_162,&1) = ,0535251 (&3, 69, 61), (4.4)
n+1
053520 (€3, L&, 61) = Z ("D (=)™ <Q§03§2%1(men£3,£2a£1) (4.5)
m=0

- 9?03%2%1 (53’525Ln7m£1)) 5 n > —1,

05380 (€3, Lo, &) = Y ("25™) 205322 (Lo, €2, 61) (4.6)

+ (_1)” (n;E-Qi_m) Zﬁn+lionA03%2A01 (53,52,Lm71£1)5 n > 15
m=0
k+3
1
053320 (€3, Ska, &1) = <k;5> (—2)™ (@?o3%2%l(sm_k£3,52,51) (4.7)
m=0

)

+ (—1)2(NE)+N(Es)) Qé3€2%1(§375275k7m§1)> , k>4

00N (&, Sk ) = ) <k_,%n+m> 208822 0 (Skamés. £2,61) (4.8)

m=0

m 2

T (—1HNENE R § <k+m> st R de i (6,6,8,, 161), k>4

m=0

The form 9?03%2%1 is almost completely determined by the properties above. In particular,

for Lo-eingenstates, Lo & = Ai(&)&, @ = 1,2,3, one has:
QOAOS%QAOl (53’ 52’ 51) = ZAS(&S)iAQ(&)iAl(&) QOAOS%2AOI (535 52’ 51) (49)

For arbitrary (finite energy) states &1, &2, &3 one can use formulae (4,4), (4,6) and (4,8) and
then (4.2), (4.3) and (4.4) to express g238281 (&3, &5, €)) in terms of

o z 0

Az As A A3zAs A
Qoo3 z2 01(1/3)”2,7/1) and Qoo3 22 OI(V3757%V2)V1) .



Thus, in contrast to the case of the Virasoro algebra, the form QA?’ = %1 is determined up

to two, instead of one, independent constants:

A = 53 D2 81 (3 1y 1),

B = QOAOS ?2 O (g, w2, 1) = 050 2 01 (kg 10, 1) = 053 12 5 (vs, v, 501,
where v; is the highest weight state in Va, (i = 1,2,3) and
xv; = S_1u;. (4.10)
2

For this reason the NS superconformal theory requires two independent structure constants
(and in consequence 8 conformal blocks). Indeed, taking into account that the superpri-
mary fields are even with respect to the common parity operator (—1)F ® (—I)F one can
show that the constants Ay, By, of the left sector and the constants Agr, Bgr of the right
sector always show up in the combinations Ay Agr, By Bgr which are just the structure

constants (2.7), (R.§):
ALAR = C391 = <903(00,00)802(1,1)801(0,0)>,
BrBr = Cs = <<P3(OO7OO)52(171)<P1(0,0)>-

As it is more convenient to keep in the correlation functions an explicit C3z; and 5321
dependence we shall work in the following mostly with the normalized form defined by

A = B = 1. In order to avoid confusion with the form QAS Az Al we shall denote the

normalized one by pAS Az Al. Thus, by definition

Az Az Ay Az Az Ay _
P 22 ot (s, ve,vn) = pt 07 0 (vs, k10, 0) = 1L

For each & € Va, we define the (generalized) chiral vertex V(£2]z) as a linear map

V(&l|z): Va, — Va,,
such that
(&|V(&l2)| &) = 520 (&, &, 6)

for all &3 € Va4, &1 € Va, (the basic facts on the vertex operators can be found in [[[d]; [[4]
and [17] can be consulted for a clear and extensive introduction to the subject). Note that
V (&2]2) does not have definite parity with respect to the left fermionic number (—1)¥ and
can be decomposed into its even (parity preserving) and odd (parity reversing) part:

V(&lz) = Vo (&2lz) + Voo (&l 2).

We shall need two special cases of these operators: V (15]2) and V (x15]2). Formulae ([.9),
#3) and (E4) imply the following relations:

[Lin, V(v2]2)] = 2™ (20, + (m + 1)A2) V(12]2),



[Lin, V (x10|2)] = 2™ (20, + (m + 1) (Ag + 1)) V(xnl2),

Zk-f—

NI

[Sk7 Veven(VQ‘Z)] ‘/’odd(*y2 ‘Z),

{Sk, Vol (a]2)} = 23 Voven (s 2), (4.11)

N

[Sk,veven(*VQ‘Z)] — Zki
{Sk, VU (sun|2)} = 2~

(20, + Ao (2k + 1)) Vo4 (1)2),

N

(20, + A2 (2k + 1)) V" (1n]2).

Using them one gets:

o Ao Ao
TAg+M| |Ar | TBs (AL,
As Ay A Ag+|K|+|M|—As—A
i (N SYNZRZN e (4.12)
e Ao AT"%
Mag+|M| (A1) TBs | Ao
Ag A2+%
Mag+|M| A1) TAs | A |,
Az Ay A Ag+|K|+|M]—As—A—1
P 22 0 (s s, wwg, 1) = R0 HIKIFIMIZAamda=s (4.13)
A, A,
A5+ M| {Al} VA [AI}JM’

where the upper lines correspond to |K| € N, the lower lines to |K| € N — %, and

Jj—1
7a[82] (A= ArFmidg) (A - A+ maBy +ma) - (A = Aq+myAy +Zml> ,

=1

p—1
na {ﬁﬂK A = A+ 261 00) (A — Ay + 2k3Ag + oy + k2) ... (A — Ay + 2k, A0 + Zkl> ’
=1

3 p'—1
s B2 A AL+ oA+ Ey) [ A = AL+ 2kA k A— Ay + 2k, A k
UA[A1:|K ( 1+ 2ko Ao + ky) 1+ 2Ky 2+;l - 1+ 2kp 2+; 1]

where p is the largest odd number not grater than ¢, and p’ is the largest even number not
grater than .

For the matrix elements (v3| V(1v2|2) [vi,km) , (13| V (% 12|2) |v1, k) one gets:

POAOS ?2 %1(V37V271/1,KM) = Pvol ?2 %3(V1,KM,V3,V4), (414)
POAOS 9 %1(V37*V27V1,KM) = pvol Q2 %3(V1’KM,*V271/3)7
for |K| € NU{0}, and
pOAOS ?2 %1(V35V2;V1,KM) = pvol ?2 %S(Vl,KM’V2’V3)’ (4 15)
pvog ?2 %1(V3a*y2aV1,KM) = - POAOI ?2 %S(VLKM,*I/Q,V?,),

for |[K| € N — 1.



Using formulae (4.19) and (4.13)) one can show an important factorization property of

the form QAS Ao Al . For an arbitrary Lg-eingenstate Lo &3 = (Asz + f) &3 one has:
023 22 DS ULy €s vy i) = ZAHFHKIHIMI-Aa=Ar
Az Az Al
A3+f AQ Aq S L QOO 1 (5371/271/1)
P oo ( K MUACH‘f’V?’Vl) X Az Ao Al
0% 1 (537*V27V1)
1
023 B2 BU(S KLy &g, 40, 1) = ZASHFIKIHMI=82=81—5 (4.16)
A3 Ag Al Lo U
As+f Az Ay QOO 1 (53’ 29 1)

ol 100 (SerkLomyagyf, *ve,v1) X
Bs & 4y
05 1 (&3, 12, 11),

where the upper lines correspond to |[K| € NU {0}, and the lower lines to |K| € N — 1.

5. NS superconformal blocks

W shall define four types of NS superconformal blocks directly in terms of the form p. For
each type there is one even,

FA[RIR () = At <1+Z "I [Al- ﬁfD,

meN

and one odd,
1
5 [ Az A A— As—A k 1k Az _Ao
2 3 2 _ AN} 1 —
fA[A4A1](2)_Z E ZFA[A4A1]’
keN—3

conformal block.
The coeflicients are defined by:

Az _A
FC{A ['AZ'AT} = (5.1)

KM,LN
Ay Az A ’
= E Pt 1% 0 (vas _v3,vA K M) [B({,A}

|K|+[M|=|L|+|[N|=f

A As A
Po T "o (wa LN, _v2,v1),

; 1KMLN o )

where [Bc A} is the matrix inverse to the matrix (), A' and _v; stand for A; or
xA\;, and v; or s, respectively, and 22 *B82-81 — ;A-A2=A1=5  For instance:

1 [Ag *As _ A Ao— 1** m m A3z *Ao
}—A[A4 AJ () = <1+Zz [A4 AID,
meN
Az *xA Ay Az A KM,LN A As A
N [AZ Aﬂ = > ot 10 0 vs,va kM) [BJA] Peo T "o (WA LN, *v2, V7).

Let us note that the definition above is independent of the choice of basis in Vﬁ.



The formulae (4.14), (§.15) imply simple relations:

1 |As xAg _ —AQ—A1—1+A4+A3 1 |*Ag Ag
FARR]e) = = : 7A@,

1
Az *Ag _ —Ao—A1—2+As+A3 3 [*A2 A
FR [A4 Al}('z) = -z 2 FA| A Ay (2),

reducing the number of blocks to 6 independent functions.
The formulae relating conformal blocks to the general 4-point functions are presented
in appendix A.

6. Recurrence relations
It follows from the definition of the blocks’ coefficients F cf A {- ﬁi

-ﬁf] that they are polyno-
mials in the external weights A;, and rational functions of the intermediate weight A and

the central charge c. They can be expressed either as a sum over the poles in A :

Az _A
Rc rs[ Ai_Aﬂ

Fla[20-22] = nlalae-2) + 2 AT AL (6.1)
r+s€2N
with A,4(c) given by (B.5), or as a sum over the poles in c:
o [Ag Ag}
rfra] -dfas]s 3 SEET e
rse

where ¢,s(A) have the form (B.6).

Formula (B.1) is valid for ¢ in an open subset Oy C R determined by the condition
that for all 5 < f the NS Verma module Va RO is not reducible. It follows from the
Kac formula (@) that for ¢ € Oy the multiplicity of zero A = A, of the Kac determinant
det B c{ A coincides with the dimension of the null subspace of matrix B c’f A- The simple pole
structure in (B.1]) is then a consequence of the following lemma:

Let A(0) be a family of linear operators acting in an n-dimensional space V' and let
A(0) be a polynomial function of §. If the order of the zero of det A(d) at 6 = 0 equals
the dimension of the null space of A(0), then in an arbitrary basis each matrix elements of
A(8)~Y has at most a simple pole at § = 0.

An analogous reasoning yields the simple pole structure in formula (5.2).

The functions th[ A3 Ay ] and ff [ A A2] can be determined from the behavior of

Fcf A for large A and c respectively. The large ¢ bahavior can be easily calculated from

the definition (b.1). The block coefficients depend on ¢ only via the inverse to the Gram
]KM,LN

matrix. Since the large ¢ asymptotic of each matrix element [BZ A is given by a

non positive power of ¢ one simply gets

A Az _A
ff[AZ Al] = lim FZA{AZ_A?]'

C—00

,10,



KM,LN
The only matrix element {BZ A} which does not vanish in the limit ¢ — oo is the

diagonal one corresponding to the state:
1= L" |A) € VgAl if f=n,
va = SaLM[A) €VIRE if f=n+i
This can be shown directly from the NS algebra by a suitable choice of the basis in V£ o

Another proof based on the Kac determinant formula is presented in appendix B.

For these matrix elements one has:

01,01 1 1
lim | B/ = =
CL‘EO{ C,A} (A[LFL™,|A) ~ nl(2A)°
11,11 1 1
lim |B = :
CEEO{ cA} <A|L?fs%5,%L21|A> nl(24),.4’ (03

where (a),, = F%a(:)n ) is the Pochhammer symbol. Furthermore, from (E13) and (fL13):

P (L vva, 1) = (A+ Ay — Ay),,
pOAOAQAl (S 11/1/2, 1) <A+A2_A1+ > )

n

PvoAonl( Z1V, KU, v 1) <A+A2—A1+ > )

n

P28 2% (5Lt mmmn) = = 22 (a5 L) = (A4 20— A1),

We thus get:
fn [Aa A TA+A; - Ay, (A+A—Ay),
Aldd A T o (24), ’
f"+%[A3A2_ :i(A+A3_A4+%)n(A+A2_A1+%)n
A 184 4] n! (24), 14 ,
T2 |:*A3 *Ag | _ i(A+A3_A4+%)n (A+A2_A1+%)n (64)
Alda an] = g (24), ’ '
fn-i-% [*Ag, *As | _ l (A + Az — A4)n+1 (A + Ay — A1)n+1
A | Ar A nl 2A),., ’
and so on.

Since A, <crs(A)> = A, the residue at A,4(c) in (B.I)) and at ¢,5(A) in (B.9) are related
by

= [As_ A, Ocrs(A) A A
A77"S|: Az Ai] - 8A RCTS(A),TS[ Az Aj:| 9
acrs(A) 8CTS(A) — 12

oh oD LA - (E ) (6.5)

We shall start with calculating the resigiue at A,s. The corresponding pole arises due to
the existence of a singular vector x,s € VETS. The rank of the zero of the Kac determinant

— 11 —



at A = A, s shows that in a generic case (i.e. when the supermodule Ve is irreducible)

all the null vectors in Vﬁm are descendants of x,.s.

Let ngM be the coefficients of x,s in the basis S_xL_jva

rs?

Xrs = Z Xf,(SMS,KL,M VA,., - (6.6)
KM

We normalize x,s such that for rs € 2N the coefficient at (L,l)% VA,,, and for rs € 2N —1
rs—1
the coefficient at S_1(L_1) 2 wa,,, is equal 11,
2
For f > % consider vectors of the form

SfKLfMXrAsevﬁ’ K|+ |M|=f-%,

where
A KM
Xrs = Z Xrs S*KL*M VA,
KM

so that x,s = lima_A, ., XTAs' The set of these vectors can be always extended to a full basis
in Vﬁ. Working in such a basis and using the properties of the Gram matrix BZ A and its

inverse one gets

c,rs

RI [*ﬁj*ﬁf] = Aps(c) x (6.7)

A4 AgA 2

A Ay A
Poo 1 0(V4a_V3,SfKL7Mer) |:BC7ATS+% 20

_rs KM,LN
} Peo T 0(S—LL_NXrs,_v2,11),

with

AlLA -1
Ars(c) - Ag%rs <A<X$>:S(>C)> ' (68)

The factorization (l.14) and the reflection properties ({.14), (.15) of the form p give:

Az _A
RY s [FR3-R2] = Aro(€) SpolLAg) (6.9)
A Az A A As A - Az _A
Xpoo 13 O4 (XT87_V37V4)poo 12 01 (XT87_V27V1)FC7AT1+L2S |:_A2_Aj:|
for f — % € NU {0}, and
Az _A
R s [ Ay Aﬂ = Ars(c) Srs(LA3) (6.10)
—— — f=% Az A
pvo ?3 %4 (XT‘Sa_V37V4) pvo %2 %1 (XT‘Sa_V27V1) FCyAri‘i‘% |:7A27A?:|
for f — % € N— 3, where v = #v, v = v, and
Srs(A) =1 | Sps(xA) = (=1)"*. (6.11)

1t is known from explicit construction of null states in the NS supermodules , E] that this coefficient
is not vanishing. It can be also easily seen by counting the power of A —A; on both sides of formula )

- 12 —



In order to calculate ,ovo?’ ?2 %1 (Xrs,_V2,v1) we first observe that by factorization (4.14):

Ax As A Ax As A QOAOTS ?2 %1(%"57”27”1)7
050 12 0 (s v2,v1) = ps 17 0 (Xrsy Ve, 1) X N (6.12)
QOOTS 12 01(1/7'85*”251/1)’
A A A A A A QOAOTS %2 %I(VT‘Sa*V27V1)7
Qoorsl 2O I(XT&*V?vVl) = poorsl 20 1(X7"87*V27V1) X (6'13)

Ars Ag A
QOO 12 OI(VT‘87V27V1)7

where rs € 2N in the upper lines, rs € 2N + 1 in the lower lines, and vrs = VA, (c)-
The Feigin-Fuchs construction allows to represent QOAOTS ?2 %1(1/r5,1/2,u1) as the left

(chiral) part of the three point “screened” correlator [[(]. It is non-zero provided the

2 2
weights A; = —% (5 — %) + % satisfy the even fusion rule:

1
Oég:l:Oél:(1—T+2]€)ﬁ—(1—8+2l)5, k+lE2NU{O}

where k,[ are integers in the range 0 < k < r —1, 0 <[ < s — 1. Similarly, one gets

QOAO” 1A2 OAI(I/TS, xv9, 1) # 0 if and only if the odd fusion rule

aytay = (1—r+2k)pF—(1—-s+2]) k+1le2N-1,

1
ﬁ )
is satisfied. Since the definition (1) implies that for the null vector x..s

Az Az A
QOOS 12 OI(XTS,_V2)V1) — 0,

we conclude from (5.13) and (.13) that also for the normalized form

P 22 G (Xrsy w2y v1) = 0 (6.14)

if the appropriate fusion rule is satisfied.
Let us define the “fusion polynomials”

r—1 s—1
rs[A] as—ar +pB—qB 1\ (a2 +ar+pB—qB7t
sl - AL 1 ( 22 > ( 2/ > (019

qg=1-—s

where p+q— (r+s) € 4Z+2 (p and q are related to the previously used variables through
p=r—1—2k, ¢g=s—1—2l) and

r—1 s—1
rslxns] ay—ar+pB—qBf "\ (as+a1+pB—qB"
el = p:IIITqH ( 22 ) ( 22 ) (6.16)

=1-s

with p + ¢ — (r + s) € 4Z. The following properties can be easily obtained by simple
combinatorics:

1. P’® [ﬁﬂ vanishes if the even fusion rule is satisfied and P]* {*ﬁf] if odd fusion rule
holds;

,13,



2. P® [ﬁﬂ is a polynomial of degree [%] in the variable As — A7 and of degree [%]
in As+A; and P? [*ﬁf] is a polynomial of degree [E] in the variable Ay — A; and

of degree [E] in Ay + Aq;
3. coefficients of highest powers of Ay — Ay in both polynomials are equal 1.

The properties above uniquely determine polynomials P/®. On the other hand, it follows

from (p.14), ([E12), (E.13) and the normalization of x,s that with an appropriate choice
A Ag Ar

of the second argument the same properties are satisfied by pg Xrss_V2,v1) as well.

This implies the equalities:

Pe(3] forgen
A1 2 ?
A Ay A i
poo 12 1(XT87V27V1) - —A
PRl forzen-d,
(6.17)
Prs BN for 5 e N
Adsa ¢ M 2 ’
Po 1 (XTS,*VQ,VI) - A 1
s
Pe(R2]  forgen-i.

In order to complete our derivation of RZ rs [* 22 *ﬁﬂ we thus only need the coefficients

A,s(c). Fortunately the r.h.s. of (.§) can be easily calculated using equations (43) — (46)
of [@]2 (note that in the present case we calculate the residue at A, rather than at ;).
In our notation the result reads:

Aps(c) = (=1t H H ( ( _5>>_’1 p+4q€2Z, (p,q) # (0,0), (r,s).

p=1l—-rq=1-s
(6.18)

Our final formulae for the residue at A, take the form:
m A rs TS m—1 _A3_A
[ 28] - s a [ 2] 2] FE s [ 23] o

for m € NU {0} and

RE 8382 = A0 S0 PR3] P[22 FELZ e [A0 82 (620)

for k € N — %, where the coefficients involved are defined by (p.11), (6.15), (p.16), and
(6.18).
Substituting (6.5), (6.19), (b-20) and (6.4) into (6.), and introducing simplified nota-

e i _9ers(B) rs [ A rs [ A
rs(A) = 5A Ars(crs(A)), PX [ AJ = Pcrs(A)[ AJ’ (6.21)

2As it was mentioned in @] these formulae are “guessed” rather than derived. However, all the ingre-
dients needed for the calculation which repeats the steps that lead to the derivation of the coefficients A,
in the case of non-supersymmetric block [@] are known: three point function in the super Liouville theory
has been determined in @] and one point functions on the Poincaré disc were calculated in @, @]
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one finally gets the recursion relations for the coefficients in the z-expansion of the NS

superconformal blocks

fard) = wfa (6.22)
ey A el e ],
r+s€2N
where m € N and
Fal R = a3 (6.23)
i; m% P£ [ } Py [ AI} Fclj;;g {’ﬁi’ﬁﬂ ’
r+se2N

where k£ € N — 2, and +/— in the second line correspond to Ag/+As, respectively. Let
us note that for each type of the NS superconformal block one gets independent recursion

formulae mixing coefficients of the even and the odd blocks.
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A. 4-point functions and 4-point superconformal blocks
Expanding the superfields in the fermionic arguments we get with the help of (£.4):
(Ag, Ay| @3(1,03;1,05)Pa(z,02; %, 02) ‘A17A1> =

= (A4, Ayl 03(1,1)2(z, 2) p3(1,1)P2(z, 2)

— 0205 (A4, Ag] 03(1,1)@2(2, 2) |A1, Ar) — 0503 (Ag, Ay| $3(1,1)2(z, 2)

+ 0362 (Ag, Ag| 5(1, 1102 (2, 2) [ A1, Ar) + 0302 (Ay, Ag| 3(1,1)1h2(2, 2) |A1, Ay

+ 0305 (Ag, Ay| s (1, 1)eha (2, 2) |A1, Ar) + 0302 (Ay, Ag| P3(1, )12 (2, 2)

,15,



The primary fields are expressed in terms of chiral vertex operators as follows:

p2(2,2) = @ <C321Veven(’/2|z) ® Vo (1|2) — Cam Vo (v]2) @ VOdd(772|5)>,
Az, Ay

Ibg(z, 2) = @ (nglvc’dd(*VQ’Z) &® Veven(ﬁz‘g) — C’gglveven(*ug‘z) &® VOdd(V2’2)>,
A3z, Aq

IEQ(Z, 2) = @ (nglveve“(ug\z) &® VOdd(*DQ‘E) + 0321V°dd(1/2‘2’) ® Veven(*uglz)> ,
A3z, Aq

#2(2,2) = P (cgmvodd(*ygyz) ® VoU (59| 2) 4+ Co1 V" (x113]2) @ veven(*VQ\z)> .
Asz,Aq

Using this representation and factorization in the (not orthogonal) basis (B.9) one gets the
following expressions for all basic 4-point functions (for simplicity we write the expressions
in the diagonal case A; = A;):

(A4l 03(1,1)p2(2,2) | A1) =

™ (CusComn [ 78, [31 &) )] — CanCymn
p

(A4l 03(1,1)P2(2,2) | A1) =

S (CusgCom |74, [A2732] )] + Can G
p

(Ag| @3(1,1)p2(2,2) |Ar) =

Z <C’43pCp21 ‘fip [*ﬁi ﬁ?] (2)
P

2

).

73 %]

2
1

2 |Asg *A
73|88 @)

).

2

2 ~ 1
+ CagpCpat | TR, [*ﬁi ﬁ'ﬂ (2)

).

(A4] @3(1,1)P2(2, 2) | A1) =

Z <é43pép21 ‘fip [*21’ *ﬁf] (Z)‘Q — Cy3pCp21
p

(AglP3(1,1)eha(2,2) A1) =

Z <é43pép21,7:ip [*23 *iﬂ (Z)]:A%p [22 ﬁﬂ (2)
p

2
1

2 Az *xA
73] )

).

1
+ CaCnd, [2731) 07, [2122] @)

(Al 3(1,1)ea(2,2) | Ay) =
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5 (Conmy, [& 2] )7, [ 472
p
+ GG [ 81] 07, 273 @)

<A4‘ 1/}3(17 1)&2(2'7 5) ‘A1> =
3 <_c~43pcpmfi,, N CEA IO
p

~ z * * =
+CaCrd [2] (7, [38] ).

<A4‘ 1/;3(17 1)¢2(2’, 5) ‘A1> =
> (-G, [381) 0F, [2 2@

p

N 1 . B
+ C43pCp21f§p [ﬁi *ﬁﬂ (z)}"ép [ ﬁj ﬁi] (z)> )

B. ¢ — o asymptotic of the inverse to the Gram matrix

]KMLN

We shall show that the only matrix element [Bf A which does not vanish in the

]0]1,0]1 ]1]1,1

1
for f € N, and [BZA for f € N+ % To this end it

is sufficient to show that the degrees (with respect to the ¢ polynomial dependence) of all

limit ¢ — oo is: [BZA

minors My v of the matrix [B({A] KMLLN except Moq,01 (or Miq,11) are strictly lower

)

than the degree of det BZA'

It follows from the NS algebra that in each column and in each row of B c’j A the degree
of matrix elements does not exceed the degree of the diagonal element. Moreover, for
KM#01 (or KM#11) we have deg |:BCJ:‘A:| ALK > 0. Thus, for all minors Mg 1N except

)

MO 1,01 (OI‘ M1 1,1 ]1) we have

deg Mgy v < Zdeg [BC{A} (B.1)

)
I1J1J
J ’

where the sum on the r.h.s. contains all diagonal elements of B cf A

It remains to show that the r.h.s. of (B.]) coincides with degdet B Cf A- 1t follows from
the Kac formula (B.4) that

degdet By = n(f) = . Pus <f—%).

1<rs<2f, r>1
r+s€2N

On the other hand,

;deg [BC{ALJ,IJ = 9(f) =

,17,



= ZZ i i Znﬁ- ka o Zmﬁ- kak—f )

=0 m%=0 1€N+1 keN—I—% ieN kEN—%

where 6(n) denotes Kronecker function. Using the identity

%

o= 4 ¢z
q? = - + - s
rs>1, r>1 ZZQ (1 - ql 1 + q’l—l>

r+s€2N

V]

we get

so that g(f) = h(f).

C. Explicit calculations at [ = %,2, and g

In this appendix we present some explicit calculation for the first few coefficients of “sym-
metric” conformal blocks. Our purpose is to illustrate how the method works and to
provide a simple check of the formulae derived.

At f =2 and f = 1 there are no ¢ poles in the Gram matrix and the coefficients of
the blocks are fully determined by the asymptotic terms (f.4).

For f = % there is a pole at

3A(3 - 24) ez (D) (28— 1)(2A + 3)
2A+1 oA 7 @A+1p

C = C31 (A) =
We have:

3 Az (A)
Az A %Az kA 31 31 |A 31 A
FafRrR] = a2

Ehfda] - dfn s+ 20 e (a2
C—C31
with (from (6.15), (p.16) and (B.21))
P[] %( (80— A1) = (28 + 1)(Ag + A1) + A),
Py [*ﬁﬂ = (A2 — Ay),
and (from (p.1§) and (f.21)))

6
(2A +1)%

These formulae are easily checked using the definitions from the section ] and an explicit

Az (A) =

expression for the Gram matrix, which in the basis {S_lL_l |A), S_a ]A>} reads:
2 2

B% [ 2AQRA+1) 4A
oAl T 4A 2A + %c '

,18,



For f =2 we have poles at ¢ = ¢31(A) and

3
C = CQ2(A) = 5 —SA
With
1
e T e N e ]
" 1
PR [R2] = 5 (12082 — A2 =428 +3)(A2 + A1) — 28 +3)(24 — 1)),
and
Ap(A) = —— 2
2T UARA 13
we have:
Az (A)
2 [as A 2 [As A 22 22 [A2] p22 [A
FC,A{Ai Af] = A[Ai Af] AR Px [Aﬂ PA [Aﬂ
Az1(A) L3 As] p31 [As] 3 Az Az
e SR e L o

Ag(A)
A3z *A A3z *A 22 A A
ra[Rr ] = AR + PR [ e [

1
31 |*Ao 31 |*As | ¢3 *Ag xAo
+ PA |:A1:|PA|:A4:|fA+%|:A4 A1:|7

what can be checked noting that in the basis {L,lL,l |A), L_o|A), 57%57% |A>} the

Gram matrix reads

AA(2A +1)  6A 8A
[BZA] = 6A  4A+$ 3A +c
8A  3A+c 4A(A+E)+2c—A)

Finally, for f = g there appears a “new” pole at

(2A — 1)(5 — A) desi(A) (A —2)(A+4)
9A 1 2 T TTeA T (Ar1e

c=c5(A) =
The fusion polynomials read

28] =

PRR] = o5 (12080 = A1) —4(A + 1)(Ag + A +24 - 1),

(85— A1) (385 = A2 = 4(A + 1)(A + A1) + A(A +1)),

o]

and with
9

AA+2)(A+1)2

Asi(A) = 2

,19,



we have:

F% *Az *Ao] f% WAz #0,]  Asi(A) pil [A2] psl [As]
Al Ay A1 | T Al AL Ay c_c A A | TA Ay
51 L= L=

n A (A) p22 [A2] p22 [As] f% *Ag *Ag

c—c A A A ALl A2 Ay Aq
22 L= L=

B Az (A) p3l [A2] p31 [As] 1 *Az Ao

C— ca Alar A A fag3 | A A

Fi o [Asda] _ g3fas A] . Ast(B) pe [xag] pat [+s]
c,A Ay Ay AlAy Ay c— cs1 A _Al_ A _A4_

+ AQQ(A) P22 _*Ag_ P22 _*A3_ f% A3z Ao
c—c A A1 A Ay A+2 | Ay A1
22 - - - -
+ A31 (A) P31 _*AQ_ P31 _*Ag_ fl Az Ao
¢ — c3 Al A TA | Agf A+% Ag Ay |

The results above fully agree with the direct calculation in which the Gram matrix, with
the form

SA(A +1)(2A +1) 12A(A +1) AA(AA +1)  12A
[Bg ] _ R2AA+1)  (A+2)8A+¢)—2(3A+0) 7A 8A + ¢
AT 4A(4A +1) A TABA+3+c) 4A
12A 8A + ¢ 4A 2A + 2¢

in the basis {SféL,lL,l |A), SféL,g |A), ngL,l |A), 57% |A>} , is used.
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